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Abstract 

To design effective marine reserves and support fisheries, more information on fishing patterns 

and impacts for targeted species is needed, as well as better understanding of their key habitats. 

However, fishing impacts vary geographically and are difficult to disentangle from other factors 

that influence targeted fish distributions. We developed a set of fishing effort and habitat layers 

at high resolution and employed machine learning techniques to create regional-scale seascape 

models and predictive maps of biomass and body length of targeted reef fishes for the main 

Hawaiian Islands. Spatial patterns of fishing effort were shown to be highly variable and 

seascape models indicated a low threshold beyond which targeted fish assemblages were 

severely impacted. Topographic complexity, exposure, depth, and wave power were identified as 

key habitat variables which influenced targeted fish distributions and defined productive habitats 

for reef fisheries. High targeted reef fish biomass and body length were found in areas not easily 

accessed by humans, while model predictions when fishing effort was set to zero showed these 

high values to be more widely dispersed among suitable habitats. By comparing current targeted 

fish distributions with those predicted when fishing effort was removed, areas with high recovery 

potential on each island were revealed, with average biomass recovery of 517% and mean body 

length increases of 59% on Oahu, the most heavily fished island. Spatial protection of these areas 

would aid recovery of nearshore coral reef fisheries.  
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reserve design, marine protected areas, predictive modeling, recovery potential, spatial planning, 

species distribution modeling 

 

 

1. Introduction 8 

 Coastal marine ecosystems are in decline worldwide due to multiple interacting stressors 9 

operating from global to local scales (Lotze et al. 2006, Norström et al. 2016). Fishing is one of 10 

the most direct of these stressors and removes fish biomass, distorts trophic and size structure, 11 

and alters community composition resulting in the loss of ecological functions and ecosystem 12 

services (Jackson et al. 2001). These demonstrated impacts point to a need for better 13 
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management of fisheries worldwide, including the implementation of additional marine reserves 14 

to recover fish biomass and restore key ecosystem functions (Edgar et al. 2014). Numerous 15 

studies have documented the benefits of spatial protection on exploited fish assemblages, such as 16 

increased biodiversity and resilience (Mellin et al. 2016), resistance to invasive species 17 

(Giakoumi and Pey 2017), and fisheries enhancement (Weigel et al. 2014). Increases in biomass 18 

and size of targeted fish species in marine reserves have been particularly well documented 19 

(Lester et al. 2009). Current research includes a focus on maximizing reserve benefits by 20 

incorporating connectivity, the demographic linking of local populations through dispersal of 21 

individuals as larvae, juveniles or adults, and habitat quality as explicit considerations in marine 22 

reserve design (Almany et al. 2009, Green et al. 2015). As larval export from marine reserves has 23 

been shown to replenish stocks in fished areas (Harrison et al. 2012), reserves that support 24 

healthy spawning populations which act as larval sources may be key for fisheries recovery. 25 

Thus, identifying areas with habitats that have the potential to support reproductive populations 26 

of targeted fishes is critical to the design of effective place-based fisheries restoration strategies.  27 

Rarely, however, do studies of coastal marine ecosystems integrate local context and 28 

stressors in estimates of recovery potential. Specifically, fishing patterns must be considered to 29 

inform effective placement of marine reserves intended to enhance fisheries. Fishing effects vary 30 

geographically and are difficult to disentangle from other factors that influence targeted fish 31 

distributions, creating a spatially complex challenge for understanding patterns of fishing 32 

impacts on these assemblages (Taylor et al. 2015, Nash and Graham 2016). Spatial ecological 33 

modeling techniques, where predicted variable distributions are mapped across geographical 34 

space, have proven useful to examine spatial trends and fill gaps in coverage of empirical 35 

datasets (Guisan and Zimmermann 2000, Guisan and Thuiller 2005, Elith and Leathwick 2009). 36 

Models can be calibrated using ecological field survey data to establish relationships between 37 

fish species and/or assemblage characteristics and remotely sensed habitat and environmental 38 

variables. These calibrated models, referred to here as seascape models, can then be used to 39 

make spatial predictions of fish, or fishery indicators, across the area of interest (Pittman and 40 

Knudby 2014).  However, these approaches have yet to incorporate spatially explicit estimates of 41 

fishing pressure and are rarely applied to prioritize areas to inform fisheries replenishment 42 

strategies in coastal marine ecosystems. 43 
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 Seascape variables such as seafloor topography, benthic cover, and wave exposure, at 44 

varying spatial scales, have been shown to be important predictors of fish assemblages 45 

(Friedlander et al. 2003, Bouchet et al. 2015, Galaiduk et al. 2017). Impacts from fishing have 46 

been inferred by comparing fish populations in populated versus remote areas (eg. Friedlander et 47 

al. 2017) and by using proxies such as local human population density and distance to markets 48 

(Williams et al. 2008, Cinner et al. 2013). Fishing effects have also been investigated through 49 

studies of fish populations along gradients of protection ranging from gear restrictions (Campbell 50 

et al. 2017), to rotational closures (Cohen and Foale 2013), to marine protected areas (MPAs) 51 

including full no-take marine reserves (Sciberras et al. 2013). Due to increased availability and 52 

coverage of empirical and remotely sensed datasets, there is opportunity to build on these studies 53 

by using seascape models to better understand fish habitat relationships in the context of fishing 54 

impacts and make realistic and spatially explicit estimates of recovery potential.  55 

 We address these knowledge and capacity gaps by developing a set of fishing effort map 56 

layers at high resolution and employing machine-learning techniques to create regional-scale 57 

seascape models and predictive maps of targeted reef fish biomass and body length for the Main 58 

Hawaiian Islands (MHI). We use a large and geographically comprehensive database of reef fish 59 

surveys and of predictor variables that includes measures of two-dimensional and three-60 

dimensional spatial patterning of the seafloor and the distribution of wave energy. Study 61 

objectives were to 1) quantify and map fishing effort and habitat patterns around the MHI , 2) 62 

identify and characterize key habitat variables which promote high targeted fish biomass and 63 

body length, 3) model and quantify the recovery potential of targeted fish assemblages in the 64 

absence of fishing pressure (in terms of mean biomass and body length), and 4) identify areas 65 

with the highest recovery potential to prioritize for management actions. 66 

 67 

2. Methods 68 

2.1 Study area 69 

 The Hawaiian Islands are located near the center of the Pacific Ocean and are the most 70 

isolated archipelago in the world. The MHI  consist of high volcanic mountain peaks, with steep 71 

topographic relief to the coastline and fringing reefs accreting on the submerged slopes. There 72 

are eight islands that comprise the MHI , six of which were evaluated in this study (from north to 73 
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south): Kaua‘i, Ni‘ihau, O‘ahu, Moloka‘i, Maui, and Hawai‘i islands (Fig. 1). The islands of 74 

Lāna‘i and Kaho‘olawe were not included due to the lack of high-resolution bathymetry data.  75 

 76 

2.2 Reef fish survey data 77 

 A spatially comprehensive dataset of reef fish surveys of the MHI  conducted between 78 

2010 and 2016 was contributed by the Pacific Islands Fisheries Science Center’s Coral Reef 79 

Ecosystem Program (Coral Reef Ecosystem Program; Pacific Islands Fisheries Science Center 80 

2016). Fish surveys utilized a paired stationary point count (SPC) protocol and were conducted 81 

on hard bottom habitat, stratified by reef zone and depth (McCoy et al. 2017). A total of 1,184 82 

independent survey locations across the MHI were used for modeling (Fig. 1). Spatial 83 

predictions were generated on a 60x60 m resolution grid to account for the dimensions of the 84 

survey method and the positional uncertainty of the global positioning systems used to navigate 85 

to survey locations.  86 

 Targeted species of the MHI nearshore fishery were defined as coral reef fishes having ≥ 87 

450 kg of annual recreational or commercial harvest for the past 10 years (2000-2010), or 88 

otherwise recognized as important for recreational, subsistence, or cultural fishing 89 

(http://dlnr.hawaii.gov/dar/fishing/hmrfs/). Biomass was estimated using the allometric length-90 

weight conversion: W = aTLb

 100 

, where parameters a and b are species-specific fitting parameters, 91 

TL is total length (cm), and W is weight (g). Parameters were obtained from a comprehensive 92 

assessment of Hawaiʻi length-weight fitting parameters (M. Donovan, unpublished data) and 93 

FishBase (Froese and Pauly 2017). Cryptic and soft-bottom species were excluded due to low 94 

sampling effectiveness. Planktivores were excluded due to patchy distributions and weak 95 

benthic-habitat relationships, as were pelagic species (Table S1). Targeted species biomass was 96 

calculated as the sum biomass of modeled species at each survey location. Targeted species body 97 

length was calculated as the average recorded body length of modeled species at each survey 98 

location.  99 

2.3 Predictor data 101 

2.3.1 Fishing Effort 102 

We modeled and mapped spatial patterns of fishing effort based on non-commercial island-scale 103 

effort estimates (McCoy 2015), following the methods of Lecky (2016). This previous work 104 
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mapped spatial patterns of catch, though did not incorporate measures of human population in 105 

the distribution of shore-based fishing estimates. We did not consider nearshore commercial 106 

fishing because it only represents a small fraction of total estimated effort and data quality is 107 

questionable (McCoy 2015). Furthermore, commercial fishing data are recorded for large 108 

reporting blocks that would obscure fine-scale spatial patterns of fishing effort.  Shore and boat 109 

fishing were modeled separately by major gear type (line, net, and spear), which were assumed 110 

to have different spatial footprints. Despite different magnitudes, patterns of total shore effort 111 

hours between gear types were very similar among islands (Appendix S1: Fig. S1) and both 112 

shore and boat fishing effort layers were highly correlated among gear types (> 0.8 Pearson r). 113 

Because spear fishing had the largest spatial footprint, highest catch per unit effort, and targets 114 

the greatest variety of species, it was used as a proxy of total effort for both shore and boat 115 

fishing, respectively.  116 

 We used average annual fishing effort (hrs/yr) for reef fish by island from ten years of 117 

recreational fishery data (2004-2013) compiled by McCoy (2015) and distributed these values 118 

into the nearshore marine area based on weighting factors related to accessibility to fishers. 119 

Fishing effort showed a declining trend over time for all islands with the exception of Lāna‘i 120 

(McCoy 2015), so estimated values were conservative. Marine managed areas where fishing is 121 

prohibited were set to zero. For shore fishing, proximity and type of roads along with shoreline 122 

steepness were used as proxies for accessibility, and values were weighted by human population 123 

within 30 km. To model spear fishing, a logistic decay function was used so effort decreased 124 

with depth to a maximum distance of 2 km from shore. The parameters of the function were set 125 

based on discussions with fishing experts in Hawai‘i and assume the vast majority of 126 

spearfishing effort is shallower than 20 m and there is no effort beyond 40 m (Lecky 2016). For 127 

boat fishing, accessibility measures were based on distance to boat launch/harbor weighted by 128 

human population within 30 km. There was no recreational fishery data available for Ni‘ihau 129 

(pop. 170) and while subsistence fishing does occur, shore fishing effort was assumed to be zero. 130 

To ground-truth the fishing effort maps, estimated shore-based spear fishing effort values were 131 

compared to total shore fishing effort values from 12 independent fishing (creel) survey locations 132 

across the MHI. Total shore fishing effort values were obtained from Delaney et al. (2017) and 133 

compared to derived spear fishing effort maps based on the sum of pixel values within polygons 134 
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matching the description of each survey area. Empirical boat based fishing effort estimates were 135 

not available for comparison.  136 

 137 

2.3.2 Habitat variables  138 

 A set of 62 gridded environmental datasets at 60x60 m resolution was generated for each 139 

island as potential predictor variables used to model reef fish assemblage metrics (Stamoulis et 140 

al. 2016). Selection of predictors was based on an extensive literature review and input from 141 

experts in Hawaiian reef ecology (Delevaux 2017). There were four types of predictor variables: 142 

seafloor topography, benthic habitat composition, geographic, and wave energy.  143 

 Seafloor topography variables were included to account for variation in reef fish 144 

distributions due to direct and indirect effects of depth and seafloor structure. A gridded 145 

synthesis of multibeam sonar and Light Detection and Ranging (LiDAR) bathymetry at 5 m 146 

resolution was used as the depth variable and to derive the suite of seafloor topography metrics. 147 

For example, the morphometric, slope-of-the-slope (a second derivative of bathymetry), 148 

measures the maximum rate of change in slope between cells within the specified analytical 149 

neighborhood. Slope-of-the-slope is a measure of surface topographic complexity, sometimes 150 

called terrain roughness, and has been shown to be positively correlated with finer scale in situ 151 

measures of rugosity such as chain-tape measurements (Pittman et al. 2009, Pittman and Brown 152 

2011). The modeled area was limited by gaps in the LiDAR bathymetry data. For this reason, the 153 

islands of Lāna‘i and Kaho‘olawe were not modeled, as well as much of the nearshore area 154 

around Ni‘ihau, and large portions of the north-east and south-east coasts of Hawai‘i island.  155 

 Benthic habitat composition variables from existing habitat maps (Battista et al. 2007) 156 

were included to account for variation in reef fish assemblages arising from the direct and 157 

indirect effects of the spatial configuration of benthic habitats. Geographic variables were used to 158 

account for variation in reef fish assemblages arising from spatial location. Wave energy 159 

variables were included to account for variation in reef fish assemblages arising from the direct 160 

and indirect effects of ocean wave dynamics.  161 

 A pairwise correlation analysis was performed on the full set of predictors for the whole 162 

study area (MHI). Highly correlated predictors (Spearman |ρ| > 0.7) were identified, and those 163 

highly correlated with two or more other predictors were removed. In cases where only two 164 

predictors were highly correlated, those with greater ecological importance (based on expert 165 
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opinion and scientific literature) were retained. After the correlation analysis, 25 out of 62 166 

seascape predictors were retained for model development (Table 1, Table S2). 167 

 168 

2.4 Seascape models 169 

 Boosted regression trees (BRT) were used to estimate relationships between targeted fish 170 

assemblage metrics (biomass and length) and the predictor datasets (De’ath 2007, Elith et al. 171 

2008). These modeled relationships were then used to create spatial predictions of targeted fish 172 

biomass and body length. Each metric was modeled independently at the archipelago scale. To 173 

make predictions with fishing pressure removed, fishing predictors were set to zero. Statistical 174 

models and spatial predictions were generated in R (R Core Team 2014) using the dismo 175 

(Hijmans et al. 2014) and raster (Hijmans 2014) packages. BRT is effective at modeling 176 

nonlinearities, discontinuities (threshold effects), and interactions between variables (Breiman 177 

1996, 2001, De’ath and Fabricius 2000). 178 

 BRT can accommodate many types of response variables. Since the targeted fish 179 

assemblage metrics were continuous variables, they were modeled using a Gaussian (normal) 180 

distribution, and appropriate data transformations were applied to improve normality. Targeted 181 

fish biomass was fourth root transformed and targeted fish body length was square root 182 

transformed. Prior to model fitting, reef fish survey data were randomly divided into model 183 

training (70%) and test (30%) subsets. The test data set was withheld from model fitting and 184 

used only to evaluate predictive performance (map accuracy). Although boosting makes BRT 185 

models less prone to overfitting (Friedman 2002, Elith et al. 2008), predictive performance was 186 

evaluated using the test data to measure how well the model generalized to new data.  187 

 Model fitting and selection was accomplished following the procedures detailed in Elith 188 

et. al. (2008). To increase parsimony, selected models were then simplified to remove less 189 

informative predictor variables. This was accomplished by dropping the least contributing 190 

predictor, re-fitting the model, and computing the change in predictive deviance relative to the 191 

initial model (Elith et al. 2008). The predictive deviance indicates the amount of variation in the 192 

response variable not explained by the model. This process was repeated and the predictive 193 

deviance was plotted over the full range of predictors. The final number of predictors was 194 

selected at the inflection point in the predictive deviance curve, where change in predictive 195 
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deviance increased relative to previous values. In general, this resulted in removal of predictors 196 

which explained < 5% of the variation in the response variable.  197 

 Bootstrapping was used to create spatially explicit predictions and calculate prediction 198 

precision. The model training dataset was repeatedly sampled with replacement to create 20 199 

bootstrap samples. Using the optimal parameter value combination and simplified set of 200 

predictor variables, a BRT model was fit to each bootstrap sample and used to make predictions 201 

to a spatially explicit gridded map using the values of the predictor variables at each grid cell. 202 

This resulted in a total of 20 spatial prediction grids that were used to calculate the mean and 203 

coefficient of variation (CV) in each grid cell (Leathwick et al. 2006), where low CV values 204 

indicate high precision. Prediction means and CVs were plotted against each other to visualize 205 

the relationship between the magnitude and precision of predictions. The mean of the 206 

bootstrapped predictions was used for interpretation and further analysis.  207 

Model performance was evaluated using the cross-validation percent deviance explained 208 

(PDE) and test PDE. The cross-validation PDE is the 10-fold cross-validation estimate of the 209 

percent deviance explained for the best model (as described above). Similarly, the test PDE was 210 

determined by calculating the percent deviance explained by the model when evaluated using the 211 

model test dataset. Both metrics indicate overall model fit, but the test PDE also provides a 212 

measure of model performance when predicting data that were independent of model fitting. To 213 

better understand the relationship between measured and predicted values, average measured 214 

values by island were compared with predicted values under current fishing levels and with 215 

fishing pressure removed. Finally, the relative importance of predictor variables for each model 216 

was evaluated and partial dependence plots were generated for each predictor variable to 217 

interpret their individual effects on the response variables (De’ath 2007, Elith et al. 2008). 218 

 219 

2.5 Recovery potential in the absence of fishing  220 

Final BRT models were used to generate gridded predictions of targeted fish biomass and 221 

body length across the MHI study area (60x60 m resolution) under current fishing levels and 222 

with fishing pressure removed. Values from these layers were used to create distribution curves 223 

of predicted biomass and body length under each fishing scenario for each island. Differences 224 

were assessed visually and tested using a two-sample Kolmogorov-Smirnov test. Overall change 225 

in spatial patterns of high predicted targeted fish biomass and body length were assessed using 226 
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maps of predicted values. Finally, means and percent change between predicted values across all 227 

modeled habitats for present conditions and with fishing effort set to zero were calculated by 228 

island to estimate recovery potential at the island scale.   229 

 230 

2.6 Spatial prioritization for management 231 

 To identify places that could be prioritized for management actions which would support 232 

fisheries restoration, we evaluated spatial differences between predictions of targeted fish 233 

biomass and body length under current fishing levels and predictions with fishing effort set to 234 

zero. We assumed that areas with the greatest differences have the highest potential for fisheries 235 

replenishment if fishing pressure were limited or removed through management actions. To 236 

identify areas where predictions differed significantly between models, we applied the 237 

methodology of Januchowski et al. (2010) using the SigDiff function in the R package 238 

SDMTools (VanDerWal et al. 2014). We computed the significance of the pairwise differences 239 

(for each grid cell) for the response variables (biomass and length) relative to the mean and 240 

variance of all differences for each island. The resulting probability values represent the area 241 

under the curve of a Gaussian distribution defined by the mean and variance across all cells for 242 

that island. The spatial grids representing the individual significance values were reclassified to 243 

indicate cells where predictions with fishing pressure removed were significantly higher than 244 

present predictions (p < 0.10). Mean absolute difference and mean percent change relative to 245 

modeled values under current fishing pressure were calculated for cells showing significant 246 

increase by island. Finally, the spatial grids representing regions of significant increase for 247 

biomass and body length were combined into a single map for interpretation.  248 

 249 

3. Results 250 

3.1 Fishing and habitat patterns 251 

Modeled shore spearing effort values under-estimated total shore effort from creel 252 

surveys by a factor of two. However, there was a strong positive relationship (r2=0.7) across all 253 

sites indicating that this measure of shore spearing effort provides a reliable proxy for overall 254 

shore fishing effort (Fig. 2). The highest intensity of shore fishing effort was estimated to be near 255 

the highly populated areas of Hawai‘i Island near Hilo and Kona, followed by the south and 256 

southeast shores of O‘ahu and near the populated areas around Kahalui and Kihei on Maui (Fig. 257 
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3A). Boat fishing effort for reef fish was generally much lower than shore fishing effort (Fig. 258 

3B). The highest values for boat fishing effort were found offshore of south O‘ahu. Moderate 259 

boat fishing effort was found along the southwest shore of Kaua‘i, south Moloka‘i, northwest 260 

Maui, and near Kona and Hilo on Hawai‘i Island (Fig. 3B).  261 

While a more complete description of marine habitat patterns in the MHI is outside the 262 

scope of this study, here we focus on several key variables shown to be important determinants 263 

of targeted fish biomass and body length. Seafloor topographic complexity (slope of slope) was 264 

highly variable within islands. Generally, areas with low values (indicating flat bottom) 265 

encompassed the greatest area, while high values (indicating complex structure) were few and 266 

widely dispersed. Islands with more shallow water habitat such as O‘ahu tended to have more 267 

flat bottom. Sine aspect represents the E/W exposure of benthic habitats. The highest values were 268 

located on east-facing shores and the lowest values on west-facing shores. Eastern exposures are 269 

most exposed to the predominate trade winds and associated short-period swells. Wave power 270 

was highest on the north shores of all islands, with the exception of Hawai‘i Island, and generally 271 

decreased among islands from north to south. Depth increased with distance from shore on all 272 

islands, and the largest shallow water areas were found on O‘ahu and the south shore of 273 

Moloka‘i.  274 

 275 

3.2 Seascape models 276 

 The final BRT model for targeted fish biomass had nine predictors. Cross-validation PDE 277 

was 37.5%, and test PDE was 35.3%. The final BRT model for targeted fish body length had 278 

nine predictors, a cross-validation PDE of 21.2%, and a test PDE of 21.4%. Based on these 279 

metrics, the biomass model fit better than the length model, and had higher predictive accuracy. 280 

Plots of prediction means vs CVs showed that higher predicted values generally had higher 281 

precision (CV < 0.5 – Appendix S1: Fig. S2).  When predictions for biomass and length under 282 

present fishing levels were compared to fish survey data at the island level, BRT predictions 283 

tended to underestimate means of field measured values within one standard deviation 284 

(Appendix S1: Fig. S3). This effect increased with the magnitude of the measured values. 285 

However, the BRT predicted values well represented the relative differences between islands 286 

(Appendix S1: Fig. S3).  287 
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Biomass was largely driven by shore fishing, while length responded primarily to boat 288 

fishing (Fig. 4). In terms of habitat, biomass was primarily driven by topographic complexity 289 

(slope of slope) and length was most associated with exposure (sine aspect). Depth and wave 290 

power were other key habitat variables that influenced both targeted fish biomass and body 291 

length (Fig. 4). These habitat variables all had positive relationships with the assemblage 292 

indicators, whereas the fishing variables had negative relationships (Fig. 4). 293 

 294 

3.3 Effects of fishing and habitat on fish biomass and body length 295 

Targeted fish biomass and body length had similar negative relationships with fishing 296 

predictors. Both declined rapidly from 0-2 hrs/ha/yr of shore (spear) fishing effort and 0-0.2 297 

hrs/ha/yr of boat (spear) fishing effort, then were relatively flat across a wide range of increasing 298 

effort values (Fig. 5, Appendix S1: Fig. S5). Areas of shore fishing effort < 2 hrs/ha/yr include 299 

the less populated islands, Ni‘ihau, Moloka‘i, and Lāna‘i, as well as remote and difficult to 300 

access areas of the more populated islands such as west Kaua‘i, east Maui, and south Hawai‘i 301 

Island (Fig. 3A). Areas of low boat fishing effort (< 0.2 hrs/ha/yr) included Ni‘ihau, northwest 302 

Kaua‘i, north O‘ahu, north Moloka‘i, west Lāna‘i, and north and south Hawai‘i (Fig. 3B).  303 

Slope of slope, a measure of topographic complexity, was the most important habitat 304 

predictor for targeted reef fish biomass, which increased rapidly at the low end of the scale (0-8°) 305 

(Appendix S1: Fig. S4). Seafloor depth had a strong positive relationship with targeted fish 306 

biomass, which increased with depth before leveling off at around 17 m. Maximum slope in a 307 

240 m radius was also positively related to biomass with a steep increase from 0-10°. Sine aspect 308 

(exposure) was positively related to biomass, which increased linearly from -1 (west facing) to 1 309 

(east facing), and wave power, responding more at higher levels (> 10,000 kW/hr, Appendix S1: 310 

Fig. S4). Predictor relationships for fish body length were similar to those for biomass (Appendix 311 

S1: Fig. S5). However, there was a stronger relationship with wave power and a weaker 312 

relationship with slope of slope. In addition, the relationship of average body length and sine 313 

aspect was not linear and length increased with depth up to 25 m before leveling off. Targeted 314 

fish body length was also positively related to maximum slope of slope within a 240 m radius, 315 

peaking between 25-40°; and slope, increasing from 0-5° (Appendix S1: Fig. S5). Thus, in the 316 

absence of fishing pressure, targeted fish biomass and body length were generally predicted to 317 
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reach their highest values in habitats with slope of slope > 8°, eastern exposures (sine aspect > 318 

0), wave power > 10,000 kW/hr, and at depths > 17 m.  319 

 320 

3.3 Recovery potential in the absence of fishing 321 

All islands except for Ni‘ihau (which was assumed to have negligible fishing pressure) 322 

showed a significant increase in predicted biomass when the influence of fishing was removed 323 

(Fig. 6). Biomass predictions for these islands under present fishing levels had distributions that 324 

were right skewed, indicating primarily low biomass levels. When fishing effort was set to zero, 325 

these distributions flattened out, shifted right, and became more symmetrical, indicating overall 326 

increases in mean biomass (Fig. 6). Targeted fish biomass was highest in areas less accessible to 327 

humans such as the north shores of most islands and the east shore of Maui. However, when 328 

fishing pressure was removed biomass increased across all suitable habitats with the highest 329 

increases in deeper areas with high topographic complexity (Appendix S1: Figs S6-S7). O‘ahu 330 

(the most populated island, with highest overall fishing effort) showed the largest predicted 331 

increase in biomass, followed by Kaua‘i, Moloka‘i, Maui, Hawai‘i, and then Ni‘ihau (Table 2).  332 

All islands except for Ni‘ihau showed a significant increase in predicted fish body length 333 

when the influence of fishing was removed (Fig. 7). Under current fishing levels, the shapes of 334 

predicted fish length distributions varied by island. When fishing effort was set to zero, predicted 335 

length distributions maintained their general shape and shifted to the right indicating an increase 336 

in average body length (Fig. 7). Similar to biomass, larger fishes were located in areas that are 337 

less accessible to humans such as north shores of most islands and the east shore of Maui 338 

(Appendix S1: Figs S8-S9). When fishing effort was set to zero, fish length increased in all areas 339 

with the highest increases along eastern exposures and areas with high wave power. As with 340 

biomass, O‘ahu showed the largest relative increase in fish body length when fishing pressure 341 

was removed; the other islands showed smaller increases (Table 3). 342 

 343 

3.4 Spatial prioritization for management 344 

These analyses identified areas with the highest recovery potential (i.e., areas with high quality 345 

habitat and currently under high fishing pressure), which would be expected to respond 346 

positively to management of fishing effort. Because current fishing effort was assumed to be 347 

zero in existing marine reserves, these areas were not selected. Areas with highest recovery 348 
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potential for targeted reef fish biomass tended to be patchy, while areas with highest projected 349 

recovery for body length were more continuous. Locations with high recovery potential for 350 

targeted fish biomass and body length were usually found in the same areas, though often with 351 

little direct spatial overlap (Fig. 8). In general, these areas were located on the east-facing shores 352 

of Kaua‘i and O‘ahu, the southeast shore of Moloka‘i, and the west shore of west Maui (Fig. 8).  353 

In addition, the prioritization analysis identified areas on the north shore of Kaua‘i, around 354 

Mōkapu point and the southeast shore of O‘ahu, Mā‘ili point on west O‘ahu, 355 

northwest Moloka‘i , Ma‘alaea bay on Maui, west Hawai‘i Island just north of Makole‘a point, 356 

and east Hawai‘i Island around Cape Kumukahi and north of Kaloli point (Fig. 8). The largest 357 

relative change in biomass for regions of significant increase were on O‘ahu and Kaua‘i, while 358 

largest relative increases in body length for these areas were on O‘ahu, with smaller levels of 359 

increase on Kaua‘i, Moloka‘i, and Maui (Table 4). Ni‘ihau showed minimal change in biomass 360 

and body length.  361 

 362 

4. Discussion 363 

 Inferred fishing effort patterns were highly variable around the MHI and seascape models 364 

indicated a low threshold beyond which targeted fish assemblages were severely impacted. 365 

Sparsely populated islands Ni‘ihau and Moloka‘i had fishing effort below this threshold, as did 366 

large, and often remote, areas on the other islands. Seascape models also identified seafloor 367 

topographic complexity, exposure, wave power, and depth as the key variables that influenced 368 

the distribution of high targeted fish biomass and body length and characterized productive 369 

habitats. Fish biomass was most sensitive to shore and boat-based fishing, as well as topographic 370 

complexity, whereas average body length responded primarily to boat fishing and was strongly 371 

influenced by exposure. While the highest targeted reef fish biomass and body lengths were 372 

mostly restricted to areas not easily accessed by humans; when fishing effort was set to zero, 373 

high values of biomass and body length were widely distributed among suitable habitats. By 374 

comparing modelled current targeted fish distributions with those predicted when fishing 375 

pressure was removed, areas with high recovery potential were revealed, with significant 376 

increases in average biomass and length across the MHI  (Table 4).  377 

 378 

4.1 Fishing effort 379 
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 An integral component of this research was the application of spatially continuous fishing 380 

effort layers developed for the MHI. We chose to use fishing effort rather than catch because 381 

derived catch estimates incorporate catch per unit effort (CPUE) which varies in relation to a 382 

number of factors including fish abundance (Maunder et al. 2006). Because fish biomass is also 383 

related to fish abundance, fish catch - unlike fishing effort – would not be independent of our 384 

response variable. Our derived fishing effort layers represent the most spatially comprehensive, 385 

high resolution, and broad-scale products yet created to quantify spatial patterns of coral reef 386 

fishery effort. However, a number of simplifying assumptions were made in order to develop 387 

these layers, primarily that fishers are more likely to frequent accessible areas, more likely to fish 388 

close to home, and that numbers of fishers are proportional to total population (Stewart et al. 389 

2010). For these reasons, our fishing effort maps may possibly capture additional impacts related 390 

to accessibility and proximity to humans, such as land based source pollution. Though our 391 

fishing layers were strong predictors of fishery indicators and have been corroborated with fine 392 

scale effort data from creel surveys, there is considerable scope to improve them further. Future 393 

studies should focus on testing large-scale drivers of fishing effort based on local-scale empirical 394 

data.  395 

 Our results show the greatest impacts on targeted reef fishes within the first 10% of 396 

modeled ranges for shore and boat fishing effort. This is supported by previous research 397 

indicating that the greatest impacts from fishing occur at low fishing levels (Jennings and 398 

Polunin 1996, Jennings and Kaiser 1998). There are few examples in the literature showing this 399 

relationship for coral reef fisheries; it has important implications for management as it highlights 400 

the importance of no-take MPAs and suggests that fishing effort in rotational closures should be 401 

carefully managed.  402 

 403 

4.2 Fish response variables 404 

 Biomass and size of targeted fish species have often been used to evaluate the effects of 405 

fishing pressure (Nicholson and Jennings 2004, Dulvy et al. 2004). The theoretical basis is that 406 

larger fishes are generally more targeted; the accumulated effects of fishing mortality reduce the 407 

number of older, and therefore larger, fishes in a population; and that large-bodied species are 408 

more vulnerable to fishing due to slow population turnover (Jennings et al. 1998, 1999). Both 409 

biomass and fish length are thought to represent the relative abundance of large and small 410 
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individuals (Shin et al. 2005). However, our results suggest they are not interchangeable and 411 

instead capture different aspects of the fished assemblage. Biomass was more sensitive to fishing 412 

compared to mean length. While higher average length always reflects greater relative 413 

abundance of large individuals, high biomass can also result from high abundance of small 414 

individuals. This was supported by the fact that slope of slope (60 m) was the top habitat 415 

predictor for biomass, while maximum slope of slope in a 240 m radius explained more 416 

variability in average length. Larger individuals and species generally have a broader 417 

geographical range of movements and thus respond to broader-scale measures of seascape 418 

structure (Pittman et al. 2007, Wedding et al. 2008, Kendall et al. 2011). It is important to 419 

consider both fished assemblage biomass and size distribution because large individuals 420 

represent high-value species and high reproductive capacity (Birkeland and Dayton 2005). 421 

 Our response variables were derived from pooling all targeted coral reef fish species (49) 422 

for which we had adequate data. These species represent a range of trophic guilds, life history 423 

traits, and vulnerability to fishing (Table S1). The majority were herbivores (23), followed by 424 

mobile invertivores (15), piscivores (9), and detritivores (2). Maximum species sizes ranged 425 

from 19 cm to over two meters and known life-spans from 4 to 50 years. This level of variability 426 

is common in coral reef fisheries and managers are in need of simple, yet meaningful metrics to 427 

guide management actions (Nash and Graham 2016). While species differences in terms of life-428 

span and age at maturity will influence timelines of recovery, habitats characteristics which 429 

support targeted fish assemblages can be identified and used to select priority areas for 430 

management (Pittman and Knudby 2014). In addition to their practicality, a significant advantage 431 

of using assemblage level metrics for spatial modeling is the low prevalence of null values which 432 

improves model performance (Wisz et al. 2008). Furthermore, using a large number of species 433 

provides more stable spatial solutions when conducting multi-species prioritization (Kujala et al. 434 

2017).  435 

 436 

4.3 Habitat and waves 437 

Of the 27 seascape predictors selected for model development, slope of slope, sine aspect, 438 

wave power, and depth were selected as final predictors and showed positive relationships for 439 

both targeted fish biomass and body length. Topographically complex habitats offer more 440 

potential niches and provide refuges from predation (Hixon and Beets 1989, Almany 2004). 441 
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Slope of slope is a measure of topographic complexity, which along with related LiDAR derived 442 

metrics, has been shown to be highly correlated with in-situ rugosity (Wedding et al. 2008, 443 

Stamoulis and Friedlander 2013) and a strong positive spatial predictor for the distribution of fish 444 

biomass (Wedding and Friedlander 2008, Pittman et al. 2009). Depth has also been shown to be 445 

a key predictor of fish distributions with higher fish biomass generally associated with greater 446 

depths (Friedlander and Parrish 1998a, Pittman and Brown 2011), suggesting that deeper waters 447 

may represent a refuge from fishing (Lindfield et al. 2014).  448 

Both targeted fish biomass and body length showed strong positive relationships with 449 

sine aspect. Sine aspect measures east/west exposure with the highest values facing east towards 450 

the prevailing trade-winds. Windward reefs may be more productive due to nutrient inputs from 451 

increased terrestrial runoff (Ringuet and Mackenzie 2005, Giambelluca et al. 2012), and 452 

predominantly rough seas along eastern shores likely limit boat and shore fishing activity. In 453 

contrast, wave power is highest along north and northwest facing shores due winter storms in the 454 

north Pacific (Fletcher et al. 2008). The positive relationships between wave energy and targeted 455 

fish biomass and body length have several possible explanations. High waves may provide a 456 

refuge from fishing pressure (Branch and Odendaal 2003, McLean et al. 2016) and flush reefs 457 

and mitigate land based source pollution, thus improving habitat quality (Fabricius 2005, 2011). 458 

Highly wave exposed areas also have less small-scale structure such as from branching corals 459 

and support fewer small species, while larger fishes are stronger swimmers and thus able to 460 

subsist in areas with high wave energy (Friedlander and Parrish 1998b, Friedlander et al. 2003). 461 

Further research is needed to confirm these patterns and identify causal mechanisms.  462 

Productive habitats for targeted fishes were characterized by eastern exposures and a 463 

combination of high topographic complexity, wave power, and depth. Topographic complexity 464 

provides ecological benefits, though it may also provide some refuge from fishing. High wave 465 

power, wind exposure, and depth likely provide refuges from fishing pressure due to reduced 466 

accessibility, which may in part explain why targeted fish biomass and body length showed 467 

strong positive relationships with these factors.  468 

 469 

4.4 Recovery patterns in the absence of fishing 470 

 Our comparison of predicted targeted fish distributions under current fishing levels and 471 

with fishing pressure removed clearly shows the strong limiting influence of fishing. Because our 472 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

fishing effort layers were partly based on accessibility to humans and human population, some of 473 

the variability they account for in models of targeted fish assemblage indicators may be due to 474 

human impacts other than fishing. While current productive and healthy targeted fish 475 

assemblages were largely restricted to areas less accessible to fishers, when fishing pressure was 476 

removed they expanded throughout all suitable habitats. This is supported by previous research 477 

which showed that structurally complex habitats harbored greater fish biomass (Graham and 478 

Nash 2013, Darling et al. 2017). When converted to percent depletion, our island-scale estimates 479 

of biomass recovery potential are generally lower than estimates of depletion reported by 480 

Williams et al. (2015), though relative differences among islands were fairly consistent. This is 481 

unsurprising given that models used in Williams et al. (2015) estimated total fish biomass and 482 

were calibrated on a suite of Pacific Islands ranging from pristine to highly degraded. Our 483 

models were calibrated only on the main Hawaiian Islands, which are far from pristine. Also 484 

Ni‘ihau was assumed to have negligible fishing impact, which is not strictly accurate as 485 

subsistence fishing occurs on the island (pop. 170), and there are reports of fishing from boats 486 

based on Kaua‘i. Furthermore, due to gaps in the bathymetry datasets the shallow nearshore 487 

areas around Ni‘ihau were not included in our analysis.  488 

 Areas with significant projected biomass and length recovery had little direct spatial 489 

overlap. This is because they represent different aspects of the fished assemblage and are 490 

primarily influenced by different seascape predictors, especially in terms of fishing effort. Shore 491 

fishing explained the most variability in targeted fish biomass, while boat fishing was most 492 

important for fish body length. As a result, when fishing pressure was removed, predicted 493 

biomass increase was highest in accessible, nearshore areas with currently high shore fishing 494 

effort, and body length showed greatest projected increases in well populated areas close to 495 

boating facilities with currently high boat fishing effort. After fishing effort, high biomass was 496 

primarily driven by high topographic complexity (slope of slope) which is patchily distributed. 497 

This resulted in fragmented patterns for areas of high biomass recovery potential. In contrast, top 498 

habitat predictors for body length were high exposure (sine aspect) and wave power which have 499 

more continuous patterns, resulting in similarly unbroken spatial patterns for areas with high 500 

length recovery potential.      501 

 502 

4.5 Management applications 503 
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 In September, 2016 the governor of Hawai‘i made a commitment at the International 504 

Union for Conservation of Nature (IUCN) World Conservation Conference to effectively 505 

manage 30% of Hawai‘i’s nearshore waters by 2030 (Ige 2016). “Effective management” will be 506 

achieved through a broad suite of approaches including area closures for fisheries replenishment, 507 

as well as identifying areas that are already healthy (Hawaii Division of Aquatic Resources 508 

2016). Therefore, identifying presently productive areas and those with high recovery potential is 509 

a priority, and an effective approach to accomplish this at the scale of the MHI is timely and 510 

could serve as a template for similar efforts elsewhere.  511 

 The prioritization approach presented in this study incorporates current fishing levels into 512 

estimates of recovery potential, thus identifying areas where management actions will be most 513 

effective in restoring coral reef fisheries. This was a result of comparing spatial predictions of 514 

fishery indicators under current fishing levels with predictions after fishing is removed. Each of 515 

these predicted maps also has utility for management. Spatial patterns of targeted fish biomass 516 

and body length under current fishing levels allows for identification of areas that presently 517 

harbor healthy fish assemblages. Effectively managing fishing in these areas would ensure that 518 

they continue to supplement adjacent fisheries, through larval export and spillover of adults and 519 

juveniles (Harrison et al. 2012, Stamoulis and Friedlander 2013). Because these areas generally 520 

have low fishing pressure, management actions would incur minimal cost in terms of fisher 521 

displacement. Predicted maps of targeted fish distributions with fishing removed identify habitats 522 

capable of supporting high biomass and larger fishes. This information can be used to 523 

characterize these essential habitats for coral reef fisheries. Comparing predictions with and 524 

without fishing pressure reveals areas to focus fisheries management and provides estimates of 525 

recovery potential. Targeted fish biomass recovery in these areas represented a 517% increase on 526 

average relative to current values for O‘ahu with smaller increases for the other islands where 527 

fishing pressure is not as high. These areas show potential mean targeted fish size increases of up 528 

59% on O‘ahu with smaller increases for the other islands. Long-term monitoring data shows 529 

over a ten-fold increase in total fish biomass during the first 16 years of protection at Hanauma 530 

Bay, the oldest no-take reserve on O‘ahu (Friedlander and Brown, 2004), suggesting that these 531 

estimates are likely conservative.  532 

 The intrinsic rate of population growth (r) is the major driver of population recovery after 533 

fishing pressure is removed (Jennings 2000). However, the rate of population recovery also 534 
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depends on the size of the remaining population and degree of compensation or depensation, as 535 

well as other factors (Jennings 2000). In the absence of this information, rough estimates of 536 

recovery rates inside no-take marine reserves can be inferred from life history traits such as 537 

trophic level, maximum body size and longevity (Abesamis et al. 2014). The targeted reef fish 538 

species included in this analysis exhibit a broad range of life history characteristics (Table S1) 539 

and thus timelines of recovery will vary. The first species likely to recover are the goatfish 540 

(Mullidae) and several of the parrotfish (Scaridae - Amax < 7 yrs) based on their short lifespans, 541 

and full recovery for these species may be possible within 10 years (Abesamis et al. 2014). In 542 

overfished regions such as the MHI, full recovery of moderate to highly vulnerable targeted reef 543 

fish such as jacks (Carangids), wrasses (Labrids), surgeonfish (Acanthurids), and large parrotfish 544 

is likely to take 20-40 years (Abesamis et al. 2014).  545 

 Areas with significant (α=0.1) projected biomass and length recovery were selected for 546 

prioritization, though the threshold could be adjusted based on management needs. Spatial 547 

predictions of high biomass and fish body length generally had high precision (CV < 0.5), 548 

providing confidence in the results. This prioritization approach identified areas where 549 

management actions will have the most scope to restore fisheries and could be used as a starting 550 

point for marine reserve selection. These areas are capable of supporting high numbers of large 551 

fishes which constitute high reproductive capacity (Berkeley et al. 2004, Birkeland and Dayton 552 

2005). The next most important criteria to consider is larval connectivity to ensure that adequate 553 

portions of larvae are exported into fished areas (Green et al. 2015). While larval transport 554 

modeling is still in its infancy, recent work has modeled potential connectivity based on 555 

oceanographic circulation in the Hawaiian islands and identified potential larval sources and 556 

sinks at 4 km2

 563 

 resolution (Wren et al. 2016). Places that are capable of supporting high spawner 557 

biomass, which are also important larval source areas for connected reefs, would be good 558 

candidates for enhanced fishery management or protection. Such areas, identified by these 559 

ecological criteria, should be additionally evaluated based on social, economic, and other 560 

considerations important for management (Smith and Wilen 2003, Charles and Wilson 2009, 561 

Jones et al. 2013). 562 

5. Conclusions 564 
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 The development of spatially continuous and comprehensive fishing effort layers, 565 

combined with seascape models of targeted fish assemblage indicators for the entire MHI, 566 

allowed us to make spatially explicit estimates of recovery potential and thus identify areas that 567 

would benefit most from focused coral reef fisheries management. These areas are generally 568 

located on the east-facing shores of Kaua‘i and O‘ahu, the southeast shore of Moloka‘i, the west 569 

shore of west Maui, and isolated locations in west and east Hawai‘i Island.  However, the high 570 

resolution maps show considerable spatial heterogeneity in the geographical distribution of 571 

recovery potential as defined by habitat and fishing patterns. While targeted fish biomass and 572 

body length were chosen here to characterize key attributes of reef fisheries, this approach could 573 

also be applied using other fish response variables that are important to managers. The 574 

information provided is well suited for both local scale management and regional marine spatial 575 

planning efforts that aim to sustain and enhance coastal fisheries.  576 

 This study is the first of its kind to develop regional-scale seascape models that integrate 577 

spatially explicit estimates of fishing pressure. The high resolution of our model inputs and 578 

predictions (60x60 m) is consistent with movement patterns of most targeted fish species and 579 

fishers (Weeks et al. 2017). Tree-based modeling approaches are well suited to handling non-580 

linear relationships and high-order interactions of complex ecological data (De’ath and Fabricius 581 

2000). The ability to make spatial predictions, or predictive mapping, expands upon field-based 582 

measurements that are expensive and spatially limited, and produces spatial information at the 583 

scope and scale necessary for large-scale assessments and marine spatial planning (Stamoulis 584 

and Delevaux 2015). Spatially comprehensive, continuous input and output datasets eliminate 585 

the need for the simplifying assumptions common in traditional approaches that can increase 586 

uncertainty when results are extrapolated across the area of interest. Predictive mapping fills 587 

gaps in survey coverage, allows for testing of management scenarios, and provides spatially 588 

comprehensive information for managers including estimates of prediction precision (Pittman 589 

and Knudby 2014). Finally, the approach is flexible so that it can be applied anywhere where 590 

demersal fish populations are targeted, and any response variable derived from fish survey data 591 

can be modeled depending on the research or management question.  592 
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Tables: 877 

Table 1: Final predictor datasets used in model development. Number of individual datasets of 878 

each type indicated in parenthesis. A pairwise correlation analysis was performed on the full set 879 

of predictors for the whole study area (MHI). Highly correlated predictors (Spearman |ρ| > 0.7) 880 

were identified, and those highly correlated with two or more other predictors were removed. See 881 

table S2 for more details. 882 

 883 

Predictor dataset types Datasets Description 

Fishing (2) Boat fishing spear, Shore 

fishing spear  

Boat and shore based fishing effort 

represented by spearing effort.  

Seafloor topography 

(12) 

Depth, Slope, Slope of slope, 

Aspect, Planar and profile 

curvature, BPI 

Seafloor topography metrics derived 

from bathymetry including depth, slope, 

structural complexity, exposure, 

curvature and bathymetric position 

index (BPI). Slope, slope of slope, and 

BPI were calculated at two scales.  

Benthic habitat 

composition (7) 

Percent cover of CCA, 

Macroalgae, Turf, and Soft 

bottom,  Proximity index, 

Shannon’s diversity index 

Percent benthic cover of major cover 

types. Seascape fragmentation/patch 

isolation. Habitat diversity. 

Geographic (3) Latitude, Longitude, Distance 

to shore 

Geographic location and distance from 

shore.  

Wave energy (1) Wave Power Wave height * wave period.  
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Table 2: Predicted mean biomass and percent increase for targeted reef fishes under present 890 

conditions and with fishing pressure removed. N is the sample size representing total number of 891 

spatially predicted grid cells per island. SD is standard deviation. Islands are ordered from north 892 

to south. 893 

 894 

  

Present No fishing 

 Biomass (g m-2 N ) mean SD mean SD % Increase 

Kaua‘i 67,967 11.2 8.7 27.6 9.7 147% 

Ni‘ihau 10,677 30.0 10.2 30.5 10.4 2% 

O‘ahu 84,870 4.2 4.1 19.9 7.6 370% 

Moloka‘i 38,220 10.9 9.2 23.5 9.4 116% 

Maui 43,830 12.5 10.0 26.1 9.1 110% 

Hawai‘i 30,702 13.4 8.7 26.6 7.3 98% 

 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

Table 3: Predicted mean body length and percent increase for targeted reef fishes under present 908 

conditions and with fishing pressure removed. N is the sample size representing total number of 909 

spatially predicted grid cells per island. SE is standard error of the mean.  910 

 911 

  

Present No fishing 
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Length (cm) N mean SD mean SD % Increase 

Kaua‘i 67,967 17.9 2.4 21.8 1.6 22% 

Ni‘ihau 10,677 23.0 1.2 23.0 1.2 0% 

O‘ahu 84,870 15.1 2.0 20.0 1.6 33% 

Moloka‘i 38,220 17.7 3.2 21.3 2.0 21% 

Maui 43,830 18.0 2.9 21.1 1.6 17% 

Hawai‘i 30,702 18.6 2.1 21.0 1.3 13% 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 

Table 4: Biomass (g m-2) and fish length (cm) mean, standard deviation (SD), mean percent 926 

increase, and standard deviation of percent increase between MHI model predictions for regions 927 

of significant difference shown in figure 7.  928 

 929 

 

Biomass Increase Length Increase 

  Mean SD Mean % SD % Mean SD Mean % SD % 

Kaua‘i 29.4 2.6 383% 184% 6.5 0.6 45% 7% 

Ni‘ihau 3.6 0.9 11% 2% 0.0 0.0 0% 0% 

O‘ahu 25.9 2.8 517% 268% 7.3 0.5 59% 10% 

Moloka‘i 21.6 2.2 349% 200% 5.8 0.2 43% 4% 
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Maui 23.4 2.2 256% 125% 6.2 0.6 46% 9% 

Hawai‘i 21.9 2.1 203% 114% 4.5 0.4 29% 4% 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 

 943 

 944 

Figure Legends: 945 

Figure 1: Main Hawaiian Islands study domain with reef fish survey locations used for 946 

modeling.  947 

Figure 2: Comparison of modeled shore fishing effort with empirical fishing survey values from 948 

12 sites across the MHI (Hawai‘ i - 4, Maui - 2, O‘ahu - 5, Kaua‘i - 1). Total fishing effort values 949 

were obtained from Delaney et al. (2017) and compared to derived spear fishing effort maps 950 

based on the sum of pixel values within polygons matching the description of the survey area in 951 

each report. The equation of the fitted line is y = 0.48x - 1660.  952 

Figure 3: Shore fishing effort around the MHI as represented by a) shore based spear effort 953 

(hrs/ha). Boat fishing effort around the MHI as represented by b) boat based spear effort (hrs/ha). 954 

Maui Nui encompasses the islands of Maui, Moloka‘i, and Lāna‘i. 955 

Figure 4: Final predictors for MHI models based on BRT model results for a) biomass and b) 956 

body length. Relative percent variation explained is shown on the x-axis and the color represents 957 

the directionality of the relationship (red: negative, green: positive, orange: non-directional). 958 
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Figure 5: Partial dependence plots of fishing predictors for the targeted reef fish biomass model. 959 

Y-axis is transformed biomass (4th root) and x-axis is predictor variable (units in table S1). Plots 960 

represent the relationship of biomass with each predictor individually when all other predictors 961 

are held at their mean. Lines are the mean of bootstrapped models plus and minus the standard 962 

deviation.  963 

Figure 6: Distributions of predicted biomass values under present fishing levels and with fishing 964 

removed for each island. X-axis is biomass values per 60x60 m grid cell and y-axis is frequency 965 

of biomass values as a proportion of the total number of grid cells per island (density).   966 

Figure 7: Distributions of predicted length values under present fishing levels and with fishing 967 

removed for each island. X-axis is length values per 60x60 m grid cell and y-axis is frequency of 968 

length values as a proportion of the total number of grid cells per island (density).   969 

Figure 8: Regions of significant increase (α = 0.1) in MHI model predictions of biomass and 970 

length after removal of fishing. Existing no-take reserves and restricted access areas are outlined 971 

in black.  972 
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