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Abstract

To design effective marine resenaasdsupport fisheriegnoreinformation on fishing patterns
and impactgor targetedspecies is neededs well adetter understanding of their key habitats
However, fishing impacts vary geographically and are difficult to disentangleditoen factors
that influencettargeted fish distributioMde developed a set of fishirgffort and habitatayers

at high reselutiomnd employed machine learning techeis|tio create regionatale seascape
models and predictive maps of biomass and body lendtrgedted reef fisksfor the main
Hawaiian Islands. Spatightternsof fishing effort were shown to be highly variable and
seascape'models indicated a low thoésbeyond whichiargeted fish assemblages were
severely impacted.opographiccomplexity, exposure, depth, andave powerwereidentifiedas
key habitat variables which influenced targeted disttributionsand defined productive habitats
for reef fisheriesHigh targeted reef fish biomass and body lengthefound in areas not easily
accessed blumanswhile model predictions when fishirgffort wasset to zershowedthese
high valuesite-be more widetirspersecamong suitable habitats. By comparing current targeted
fish distributions with those predicted when fisheftprt wasremoved, areas with high recovery
potentialon each islan@vere revealedwith average biomass recovery of 517% arehnbody
length incease®f 59% on Oahu, the most heavily fished islaBplatial protection of theseeas

would aidrecoveryof nearshore coral reef fisheries.

Key words
Coral reefs, essential habitéishing effort, fisherieseplenishmentHawaii, LIDAR, marine
reservedesignmarine protected aregmedictive modeling, recovery potential, spatial planning,

species distribution modeling

1. Introduetion

Goastaimarineecosystems arna decline worldwide due toultiple interacting stressors
operating fomglobal to local scales (Lotze et 2006, Norstrom et al. 2016jishing isone of
the most direct of these stressamsl removefish biomass, distorts trophand sizestructure
and alters community composition resulting in the losscofogicalfunctionsand ecosystem

serviceqJackson et al. 2001)hesedemonstrated impacts point to a néadbetter
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management of fisheries worldwide, including the implementati@dditional marine reserves
to recover fish biomass and restore key ecosystem fun¢iaiggar et al. 2014). Numerous
studies have documented thenefitsof spatialprotection orexploited fish assemblages, such as
increased biodiversity am@silience(Mellin et al. 2016)resistance to invasive species
(Giakoumi_and. Pey 2017and fisheries enhancemdlifeigel et al. 2014)ncreases in biomass
andsizeof targeted fistspeciesn marine reservelsave been particularly well documented
(Lester'etali’2009Current researcimcludes a focus on maximizing reserve benefits by
incorporating €onnectivity, the demographic linking of local populations through dispersal of
individuals adarvae, juveniles or adultand habitat qualitas explicit considerations marine
reserve desigfAlmany et al. 2009, Green et al. 201A%. larval export from maringeeserves has
been shown taeplenish stocks in fished arg@arrison et al. 2012yeserves thaupport
healthy spawning populatiom¢hich act as larval sourcesay bekey for fisheriegecovery.
Thus, dentifying areas with habitats tHave the potential teupport reproductive populations
of targetedishesis critical to the design of effective plabased fisheries restoration strategies.
Rarely*however, dstudies of coastainarineecosystemstegrate local context and
stressors in estimates of recovery poten8pkcifically, fishing patterns must be considered to
inform effective placement of marine reserves intended to enhance fiskheiesgeffectsvary
geographieally and are difficult to disentangle from other fadt@snfluence targeted fish
distributions, creating a spatially complex challenge for understanding pattersisirg fi
impactsontheseassemblage@aylor et al. 2015, Nash and Graham 20 $patialecological
modeling techniques, where predicted variable distributions are mapped across geaigraphi
space, havprevenuseful to examine spatial trends and fill gaps in coverage of empirical
dataset¢Guisan and Zimmermann 2000, Guisan and Thuiller 2005, Elith and Leathwick 2009).
Modelscan becalibrated using ecological field sugvdata to establish relationships between
fish species.and/or assemblage characteristics and remotely sensedhdl@tatironmental
variables. These calibratedodels referred to here as seascape modelsthen be used to
makespatialpredictions dish, or fishery indicatorsacross tharea of intereqtPittman and

Knudby 2014).However, these approaches have yet to incorporate spatially explicit estimates of

fishing pressurand are rarely applied to prioritize areas to inform fishegpknishment

strategies in coastalarineecosystems
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Seascapeariables such aseafloor topography, benthic cover, and wave expostire
varyingspatial scaledave been shown to be importanedictorsof fish assemblages
(Friedlander et al. 2003, Bouchet et al. 2015, Galaiduk et al. 2017). Impacts from fishing have
been inferred by comparing fish populations in populatdus remote areésg. Friedlander et
al. 2017) and.by using proxies sucHasal human population densignd distance tmarkets
(Williams et al..2008, Cinner et al. 2013). Fishing effects have also been invesstigaugh
studies’of fish"populati@along gradients of protection ranging from gear restrictiGasnpbell
et al. 2017)torotational closure€Cohen and Foale 2013 marine protected areas (MPAS)
including full notake marine reservgSciberras et al. 2013). Due to increased availability and
coveragef.empirical and remotely sensed datasitsre is opportunity to build on these studies
by using seasecape models to better understand fish habitat relationships in theof distent
impactsand make realistic and spatially explicit estimates of recovery potential

We address these knowledmad capcity gaps bydevelopinga set offishing effortmap
layers athigh resolution anégémploying machindearning techniques twreateregionalscale
seascape modedsd predictive mapaf targeted reef fish biomass analdy length for théain
Hawaiian IslandsNIHI). We use darge and geographically comprehensive database of reef fish
surveys anaf predictor varial#s that includes measureswb-dimensional and three-
dimensionaBpatialpatterning of the seafloor and the distribution of wave energy. Study
objectiveswereto 1) quantify and map fishirgffort and habitat patterns around téll, 2)
identify and characterizkey habitatvariableswhich promote high targeted fish biomass and
body length;*3),model and quantify the recovery potentitdrgieted fistassemblageis the
absence ofifishing pressujiia terms of mean biomass and body length), andefitify areas
with the highest recovery potential to prioritize for management actions.

2. Methods
2.1 Study area

TheHawaiian Islands are located near the center of the Pacific Ocean and are the most
isolatedarchipelago in the world’he MHI consist of high volcanic mountain peaks, with steep
topographic relief to the coastlimad fringing reefs accreting ¢ime submeged slopesThere

are eight islands that compriee MHI, six of whichwereevaluated in this study (from north to
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south):Kaua'i, Ni‘ihau, O'ahu, Moloka'‘i, Maui, andHawai'‘i islands (Fig. 1). The islands of

Lana‘i and Kaho'olawe were not included due to the lack of high-resolution bathymetry data.

2.2 Reef fish survey data

A spatiallycomprehensiveatasebf reef fish surveys of thielHI conducted between
2010 and 201&@vascontributed by théacific Islands Fisheries Science Cent&xsal Reef
Ecosystem PrograCoral Reef Ecosystem Program; Pacific Islands Fisheries Science Center
2016).Fish'surveysiltilized a paired stationary point coPC)protocol andvere conducted
on hard bottom'habitastratified by reef zone and depth (McCoy et al. 20A7ptal of 1,184
independent survey locations across the MHI were used for modeling (Fagatipl
predictions'were generated on 60 m resolution grid to account for the dimensions of the
survey method'and the positionaicertaintyof theglobal positioning systems used to navigate
to survey locations

Targetedspecies of the MHI nearshore fishery were definecbaal reef fishehaving>
450 kg of annualecreational ocommercial harvedor the past 10 years (2000-2010), or
otherwiserecognized asnportant for recreational, subsistence, or cultural fishing
(http://dinrshawaii.gov/dar/fishing/hmris/Biomass was estimated using the allometric length
weight conversion: W aTL®, where parameteesandb are speciespecific fitting parameters,
TL is total length (cm), and W is weight (g). Parameters were obtained from a comprehensive
assessment of Hawalength-weight fitting parameters (M. Donovampublished dategnd
FishBasgFroese and Pauly 2017). Cryptic and soft-botspecies were excluded dudadav
sampling effectivenes$lanktivoreswere excluded du® patchy distributions and weak
benthichabitat relationships, as were pelagic spediable S). Targetedspecies biomass was
calculated. as the sum biomadsnodeled speciest each survey locatiof.argeted specidsody
length was.calculated as the average recobdeg length of modeled speciaiseach survey

location.

2.3 Predictor data
2.3.1 Fishing Effort
We modeled and mapped spatial patterns of fishing effort based oconamercial islanegcale

effort estimategMcCoy 2015), following the methods bécky (2016).This pevious work
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mapped spatial patterns of catch, though did not incorporate measures of human population in
the distribution of shorbased fishing estimated/e did not consider nearshore commercial
fishing because it only rements a small fraction of total estimatgftbrt and data quality is
guestionable (McCoy 2015). Furthermocemmercial fishig dataarerecorded fotarge
reporting bleekghatwould obscure finescale spatial fggerns of fishing effort. Shore and boat
fishing were modeled separately by major gear type (line, nespaadt), which were assumed
to have different spatial footprints. Despite different magnitudes, patternsla$hiote effort
hours between gearggs were very similar among islandgpendix S1: Fig. S1) and both
shore and boat/fishing effort layers were highly correlated among gear types (>réd@Pea
Because spearnfishing h#te largest spatial footprint, highest catch per unit efforttanmgbts
the greatest variety of species, it wasdias a proxy dbtal effort for both shore and boat
fishing, respectively

We used average annual fishing efforsfyr) for reef fish by island fronten years of
recreational fishergata(2004-2013) compiled by McCoy (2015) and distributed these values
into the nearshore marine area based on weighting factors related to ditgdsdilshers.
Fishing effert'showed a declining trend over time for all islands with the esoeqfti.ana‘i
(McCoy 2015) so estimated valuegere conservativeMarine managed areas whdighing is
prohibitedwere set to zerd-or shore fishing, proximity and type of roads along with shoreline
steepness were used as proxies for accessjlaifity values were weighted by human population
within 30km. To model spear fishing, a logistic decay function was used so effort decreased
with depthd#e"aymaximum distance of 2 km from shdree parameters of the function were set
based on diseussiomsth fishing experts in Hawai‘and assumehe vast majority of
spearfishing effort is shallower than 20 m and there is no effort beyond 40 m (LeckyF2y16)
boat fishing, accessibility measures were based on distanoatttabnch/harbor weighted by
human population within 3km. There was no recreational fishery data availabl&ffnau
(pop. 170).andavhile subsistence fishing does occur, shore fishing effort was assumed to be zero.
To ground-truth the fishing effort mapsstimatedhorebasedspear fishing effort values were
compared to total shofeshing effort values from 12 independdishing (creel)survey locations
across te MHI. Total shorefishing effort values were obtained frddelaney et al(2017) and

compared talerived spear fishing effort maps based on the sum of pixel values within polygons
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matching the descriptioof eachsurvey areaEmpirical at basd fishing effort estimates were

not available for comparison.

2.3.2 Habitat variables

A set.of 62 griddegnvironmental datasets ab@D m resolution was generated for each
island as potential predictor variables used to model reed$isbmblagenetrics(Stamoulis et
al. 2016) Selection of predictors was based on an extensive literature reviewpahéam
experts in"Hawaiian reef ecologpelevaux 2017)There were four types of predictor variables:
seafloor topography, benthic habitat composition, geographicyawnel energy

Seafloor topography variables were included to account for variation in reef fish
distributions due to direct and indirect effects of depth and seafloor structureld&dyri
synthesis of multibeam sonar and Light Detection and Ranging (LIDAR) bathymetry at 5 m
resolution was used as the depth variable and to derive the suite of segitgwaphy metrics.
For example, the morphometric, slope-of-the-slope (a second derivative of baghymet
measureshegmaximunrate of change slope between cells within the specified analytical
neighborhood«=Slope-dfie-slope is a measure of surface topographic complexity, sometimes
called terrain_roughness, and has been shown to be positively correlated with feier stual
measures-afugosity such as chatape measuremeniBittman et al. 2009, Pittman and Brown
2011). The modeled area was limited by gaps in the LiDAR bathymetry data. For this tleason,
islands oflana‘i and Kaho‘olawe were not modeled well as much of the nearshore area
aroundNi‘ipaupand large portions of the noréast and southast coasts dflawai'‘i island

Benthiehabitat composition variables from existing habitat r(Batista et al. 2007)
wereincluded to account for variation in reef fiaksemblagesrising from the direct and
indirect effects of the spatial configuration of benthic habitats. Geographic variablessedr®
account for,variation in reef fisklssemblagearising from spatial locatioWave energy
variables weréncluded to account for variation in reef fiaghsemblagearising from the direct
and indirectseffects of ocean wave dynamics

A pairwise correlation analysis was performed on thiesktl of predictors for the whole
study area (MHI). Highly correlated predictors (Spearmfr P.7) were identified, and those
highly correlated with two or more other predictarsre removedin cases wherenly two

predictors were highly correlatetthosewith greaterecological importancébased on expert
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opinion and scientific literature) were retained. After the correlation analgsmsit of 62
seascape predictors were retdifer model development (Table Table S2.

2.4 Seascape models

Boosted regression trees (BRT) were used to estimate relationships betrgetadish
assemblage metrics (biomass and length) and the predictor ddesatk 2007, Elith et al.

2008). These'modeladlationships were then used to create spatial predictidasgettel fish
biomass anthody length Each metric was modeled independently at the archipelago scale. To
make predictions with fishing pressusmoved, fishing predictors were set to z&tatistical
modelsand:spatial predicti@weregeneratedn R (R Core Team 2014) using the dismo
(Hijmans etal.»2014and raste(Hijmans 2014packagesBRT is effective at modeling
nonlinearites, discontinuities (threshold effects), and interactions between val@l#anan

1996, 2001, De’ath and Fabricius 2000).

BRT can accommodate many types of response varigBies thetargetedish
assemblageymetrics were continuous variables, they were modeled using a Gaussian (normal)
distribution; and appropriate data transformations were applied to improve nprireigeted
fish biomass was fourth root transformed sargetedish body length was square root
transformed: Prior to model fitting, reef fish survey data were randomly divided into model
training (70%) and test (30%) subsets. The test data set was withheld from model fitting and
used onlyto evaluate predictiperformance(map accuracy)Although boosting makes BRT
models less*prene to overfitting (Friedman 2002, Elith et al. 2008), predietifi@mpance was
evaluated using theest data to measure how well the model generalized to new data.

Model fitting and selection was accomplished following the procedures detakiithi
et. al. (2008)To.increase pamnony, €lectedmodelswerethensimplified to removdess
informativepredictor variablesThis was accomplished by dropping tlast contributing
predictor re-fitting the model and computing the change in predictive deviance relative to the
initial model(Elith et al. 2008). The predictive deviance indicates the amount of variation in the
response Vvariable not explained by the model. This process was repeated and tivepredict
deviance was plotted over the full range of predictors. The final number of prediasrs w

selected at the inflection point in theedictive deviance curve, where change in predictive
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196 deviance incrased relative to previous values. In general, this resulted in removal of predictors
197 which explained < 5% of the variation in the response variable.

198 Bootstrapping was used toeatespatially explicit predictions anchlculateprediction

199 precision The nodel training dataset was repeatedly sampled with replacement to create 20
200 bootstrap samples. Using the optimal parameter value combination and simplitéd se

201 predictor variables, a BRT model was fit to each bootstrap sample and used to edakteops

202 to a spatially"explicit gridded map using the values of the predictor variables at each grid cell.
203 This resulted ina total of 20 spatial prediction gtliwere used to calculate the mean and

204 coefficient of variation (CV)n each grid cel{Leathwick et al. 2006), where low CV values

205 indicate highgrecisiarPrediction means and CVs were plotted against each other to visualize
206 the relationship between the magnitude and precision of prediciibasnean of the

207 bootstrapped predictiongasused for interpretation and further analysis.

208 Model performance was evaluated usingdtwssvalidation percent deviance explained
209 (PDE)andtest PDEThecross-validation PDE is the ¥6ld crossvalidation estimate of the

210 percent deviance explained for the best modaii¢asribed above). Similarly, tiest PDE was

211 determined by-calculating the percent deviance explained by the model when evaingtéteus
212 model test.dataset. Both metripglicate overall model fit, but the test PDE also provides a

213 measure.emodel performance when predicting data theteindependent of model fitting.o

214 Dbetter understanithe relationship betweaneasured and predicted valuagerage measured

215 values by'island were comparetith predicted values under current fishing levels and with

216 fishing pressure removed. Finalletrelative importance of predictor variables for each model
217 wasevaluatedand partial dependence plots were generated for each predictor variable to

218 interprettheir individual effects on the response varialflzs'ath 2007, Elith et al. 2008).

219

220 2.5 Recovery.potential in the absence of fishing

221 Final BRT models werased to generate gridded predictions of targeted fish biomass and
222 body lengthsacross the MHI study area (60x6fesolution)under current fishing levels and

223  with fishing'pressure removeWalues from these layers were used to create distribution curves
224  of predicted biomass and body lengtider each fishing scenario for each island. Differences
225 were assessed vislyphndtested using a tweample Kolmogorov-Smirnotest. Overall change

226 in gpatial pattern®sf high predicted targeted fish biomass and body length were assessed using
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maps of predicted values. Finally, meand percerthangebetween predictedalues amoss all
modeled habitats for present conditions and with fiskiifgrt set to zero were calculated by

island to estimate recovery potentlthe island scale

2.6 Spatial prieritization for management

To identify placeghat could be prioritizetbr management actionwshich would support
fisheries restoration, wevaluatedspatialdifferencesetweerpredictions otargetedish
biomass and'body length under current fishing levels and predictions with fefforigset to
zera We assumed that areas with the greatest differences have the highest potential for fisheries
replenishmentuif fishing pressure were limited or removed through managertiemns.ato
identify areasvhere predictions differed significantly between models, we applied the
methodology of\Januchowski et al. (2010) using the SigDiff function in the R package
SDMTools(VanDerWal et al. 2014)We computed the significance of the pairwise differences
(for each grid cell)dr the response variablesigmass and lengthglative to the mean and
variance of-alidifferences for each islaitie resulting probability valugrepresenhe area
under the eurve of adbssian distribution defined by the meamd variance across all cells for
that islandw.Ihe spatial grids representing the individual significance values were reclassified to
indicate_cells where predictions with fishing pressure removed were sagtifitiigher than
presenpredictions (p < 0.10Mean absolutéifferenceandmeanpercent change relative to
modeled values under current fishing pressweee calculated for cells showing significant
increase byfislandrinally, the spatial grids representing regions of significareasdor

biomass and:-body length were combined into a singlefonapterpretation

3. Results
3.1 Fishing-and:habitat patterns

Modeledshore spearingffort values undeestimated total shore effort from creel
surveys by factor of two. Howevéhere was a strong positive relatship (f=0.7) aross all
sites indicatingsthat this measuresbiore spearing effort provides a reliable proxy for overall
shore fishing effort (Fig. 2). The highest intensity of shore fishing effort wanadetl to be near
the highly populated areas of Hawai'i Island near Hilo and Kona, followed by the south and

southeast shores of O‘ahu and near the populated areas around Kahalui and Kihei oilgMaui (F

This article is protected by copyright. All rights reserved



258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

3A). Boat fishing effort for reef fish was generally much lower than shore fishiog €Fig.
3B). The highest values for boat fishing effort were found offshbsewth O*ahu. Moderate
boat fishing effort was found along the southwest shore of Kaua'i, south Moloka'i, estthw
Maui, andnearKona and Hilo on Hawai'i Island (Fig. 3B).

While.a.more complete description of marine habitat patterns in the MHI is®tits
scope of this study, here we focussamverakey variables shown to be important determinants
of targetedfish'biomass and body length. Seafloor topographic complexity (slope of slope) was
highly variable*within islands. Generally, areas with Iaiues {ndicating flat bottom)
encompassed the greatest area, while high values (indicatimgex structureyverefew and
widely dispersedislands with more shallow water habisatch as @Ghu tended to have more
flat bottom:Sine aspect represents &V exposure of benthic habitats. The highest values were
located on eadfcing shores and the lowest values on vi@sihg shores. Eastern exposures are
most exposed to the predominate trade winds and associategestadiswells\WWavepower
was highest on the north shores of all islands, with the exception of Hawai'i Islange@erally
decreasedramong islands from north to south. Depth increased with distance from shore on a
islands, and the largest shallow water areas were found on O‘ahu a@odtthahore of
Moloka't.

3.2 Seascape models

The.final BRT model for targeted fish biomass hatk predictors. Crossalidation PDE
was37.B0gand test PDE wadb.3%. The final BRT model faargetedish body length had
nine predictors; a crosalidation PDE of 21.2%, and a test PDE of 24.8Based on these
metrics, the biomass model fit better than the length maddlhad higher predictive accuracy.
Plots of prediction means vs CVs showed that higher predicted values generally had highe
precision (C\.<,0.5 — Appendix SEig. S2). When predictions for biomass and length under
present fishingdevels were compared to fish survey data etldnel level, BRT predictions
tended to_underestimate means of figlelasured values within one standard deviation
(Appendix S1Eig. S3). This effect increased with the magnitude of the measured values.
However, the BRT predicted value®ll represented the relative differences between islands
(Appendix S1: Fig. S3).
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288 Biomass was largely driven by shore fishing, while length responded primarily to boat
289 fishing (Fig. 4). In terms of habitat, biomasgas primarily driven by topographic complexity

290 (slope of slope) and length was most associatedexjpbsure gine aspeg¢t Depth and wave

291 powerwergother key habitat variables that influenced both targeted fish biomass and body
292 length (Fig.4)=These habitat variables all had positive relationships with the assemblage
293 indicators, whereas the fishing variables had negativeamships (Fig. %

294
295 3.3 Effectsoffishing and habitat on fish biomass and body length
296 Targeted fish biomass abddylength had similar negative relationships with fishing

297 predictorssBoth declined rapidly from 0-2 hrs/halyr of shore (spear) fishing @fidi@-0.2

298 hrs/halyr offboat (spear) fishing effort, then were relatively flat acrossearange of increasing
299 effort values (Fig5, Appendix S1: Fig. S5). Areas of shore fishing effort < 2 hrs/ha/yr include
300 the less populatedlands Ni‘ihau, Moloka‘i, and Lana‘i, as well as remote and difficult to

301 access areas of the more populated islands such as west Katdaeasnd south Hawai'i

302 Island (Fig=3A). Areas of low boat fishing effort (< 0.2 hrs/ha/yr) included Nijilmarthwest

303 Kaua‘i, north Oahu, north Moloka‘i, west Lana‘i, and north and south Hawai‘i (Fig. 3B).

304 Slope of slope, a measure of topographic complewiyg, the most importahi@abitat

305 predictorfortargeted reef fish biomassich increased rapidly at the low end of the s¢@ig°)
306 (Appendix S1Fig. S9. Seafloor depth had a strong positive relationship with targeted fish
307 biomass, which increased with depth before levelingidfound 17 mMaximum slope in a

308 240 m radius'was also positively related to biomass with a steep increaseltdnsihe aspect
309 (exposue)was positively related tbiomasswhich increasetinearly from -1 (west facing) to 1
310 (east facing)and wave power, responding more at higher levels (> 10,000 kW/hr, Appendix S1:
311 Fig. S9. Predictor relationships for fidhodylength weresimilar tothose for biomass (Appendix
312 S1:Fig. S5):Hoewever, there wasstronger relationship with wave power and a weaker

313 relationship.with slope of slope. In addition, the relationship of average body |lenigima

314 aspectwassnot linear and length increased with depth up to 25 m before levelingrofétad

315 fish body length was also positively related to maximum slope of slope within a 240us) ra
316 peaking between 25-80and slope, increasing from 0-Appendix S1Fig. S5). Thus, in the

317 absence of fishing pressure, targdisld biomass and body lengileregenerallypredicted to
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318 reachtheir highest values in habitats wishope of slope 8°, eastern exposurésine aspect

319 0),wavepower> 10,000 kV/hr, and at depths 17 m.

320

321 3.3 Recovery potential in the absence of fishing

322 All islands except foNi‘ihau (which was assumed to have negligible fishing pressure)
323 showeda significant increase in predicted biomass when tiigeimce of fishingvasremoved
324 (Fig. 6)'Biomass predictionfor these islandander present fishing levels haistributiors that
325 wereright skewed, indicating primarily low biomass levéMhen fishingeffort wasset to zero,
326 these digibutions flattered out, shifedright, and beememore ymmetrical, indicating overall
327 increases in mean biomag$sd. 6). Targetedish biomass was highest areas lesaccessible to
328 humans such as the north shores of most islands and the east shore of Maui. However, when
329 fishing pressur&vasremovecdbiomass increaseatrossall suitable habitataith the highest

330 increases in deeper areas with high topographic complexity (AppendsgS1S6S7). O‘ahu
331 (the most populated island, with highest overall fishing effdrowedthe largespredicted

332 increase inrhiomass, followed Byua'i, Moloka'i, Maui, Hawai'‘i, and therNi‘ihau (Table?2).
333 All islands except foNi‘ihau showeda significant increase in predictésh body length
334 when theunfluence of fishingasremoved Fig. 7). Under current fising levelsthe shapes of
335 predicteddish length distributionsriedby island. When fishingffort wasset to zero, predicted
336 length distributions maintag@dtheir general shape and sadto the right indicating an increase
337 in average.body lengtlrig. 7). Similar to biomasdarger fishesverelocated in areathat are
338 lessaccessgiblesto humarssich as north shores of most islands and the east shore of Maui
339 (Appendix'SiLFigs S8S9. When fishing effortvasset to zero, fiskength increasgin all areas
340 with the highest increases along eastern exposures and areas with high wavAgoutar

341 biomassO’ahushowedthe largest relative increasefish body length when fishing pressure
342 wasremoved;.the other islands shedsmaller increase@able 3).

343

344 3.4 Spatial prioritization for management

345 These analysddentifiedareas wittthe highest recovery potentialgj.areas with high quality
346 habitatand currently under high fishimressurg which would be expected to respond

347 positively tomanagemenf fishing effort. Because current fishing effort was assumed to be
348 zero in existingnarine reserves, these areas were not seléateas with highest recovery
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potential for targeted reef fish biomass tended to be patchy, while areas witst pighected
recovery for body length were more continuous. Locatwaitis high recovery potential for
targetedish biomass and body lengitere usually foundn the same areathough ofterwith
little direct spatiabverlap (Fig. 8)In general, these areas were located on thefagiayy shores
of Kaua'i and.O'ahu, the sowthstshore of Moloka'j and the west shore of west Mdhig. 8.
In addition;,the prioritization analysis identifiadeas on the north shorekdua'i, around
Mokapupointand thesoutheasshore ofO‘ahu, Ma‘“ili point on west O‘ahu,
northwest"Moloka'i Ma‘alaea bay on Maui, west Hawai'i Island justrth of Makole'a point,
and east Hawaifisland around Cape Kumukahi and north of Kaloli point (FigTBg krgest
relative changén biomasdor regions of significanincreasavereon O‘ahuandKaua'i, while
largest relativencreass in body lengttior these areas weom O'ahu, with smaller levels of
increase on Kaua'i, Moloka'i, and Ma(iiable 4) Ni‘ihau showedminimal change in biomass

and body length.

4. Discussion

Inferred fshing effort patterns were highly variable around the MHI &adsape models
indicated a“lew threshold beyond which targeted disbemblages weseverely impacted
Sparselyspopulated island‘ihau and Moloka'i had fishingffort below this thresholdasdid
large and often remotgreas orthe other islandsSeascape nuels alsadentified seafloor
topographie.complexityexposureywave power, and depth as the key varialthegtinfluenced
the distribution‘of highiargeted fistbiomass antbody length andharacterizegroductive
habitats. ishibiomass wasmostsensitive tashore and bodtased fishing, as well aspographic
complexity,whereasaverage body length responded primarily to boat fishing and was strongly
influenced by exposur&Vhile the highed targeted reef fish biomass abddy lengthsvere
mostlyrestricted tareas not easily accessed by humaiten fishingeffort wasset to zero,
high valuessef:biomass and body lengirewidely distributedamong suitable habitats. By
comparing'modelledurrent targeteéish distributions with those predicted when fishing
pressuravasremoved, areas with high recovery potentiaterevealedwith significant
increases in average biomass and length atmed8gHI (Table 4).

4.1 Fishing effort
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An integral component of this research was the application of spatiallyeons fishing
effort layers developed for the MHI. We chose to use fishing effort rather than catch because
derived catch estimates incorporate catch per unit effort (CPUE) which varies in relation to a
number of factors including fish abundariddéaunder et al. 2006 Because fish biomass is also
related to fish,abundance, fish catch - unlike fishing effort — would not be independent of our
response variable. Our derived fishing effort layers represent the most spatially comprehensive,
high resolution;"and broagtale products yet created to quantify spatial patterns of coral reef
fishery effort."However, a number of simplifying assumptions were made in ordereiople
these layers, primarily that fishers are more likely to frequent accessiate arare likely to fish
close to hamepand that numbers of fishers are proportional to total pop(hitamart et al.

2010). Forthese reasons, our fishing effort maps may possibly cagtlitiersal impacts related

to accessibility and proximity to humans, such as land based source pollution. Though our
fishing layers were strong predictors of fishery indicators and have been coredbeitht fine
scaleeffort.data from creel surveythere is considerable scope to improve them further. Future
studies sheuldifocus on testing large-scale drivers of fishing effort based lbsdaleaempirical
data.

Oururesults show the greatest impacts on targeted reef fishes within the first 10% of
modeled.ranges for shore and boat fishing effidris is supported by previous research
indicating that the greatest impacts from fishing occur at low fishing |€3&t&ings and
Polunin 1996, Jennings and Kaiser 1998)ere are few examples in the literature showing this
relationship*for,coral reef fisherieshis important implications for management as it highlights
the importanee of ntake MPAs and suggests that fishing effort in rotationalcéssshould be

carefully managed

4.2 Fish response variables

Biomass and size of targeted fish species have often been used to evaluate the effects of
fishing pressure (Nicholson and Jennings 2004, Dulvy et al. 2084é)theoretical basis is that
larger fishes are generally more targeted; the accumulated effects of fishing mortality reduce the
number of older, and therefore larger, fishes in a population; and thablzdget specieare
more vulnerable to fishing due to slow population turng¥ennings et al. 1998, 1998oth
biomass and fish length are thoughtepresent the relative abundance of large and small
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411 individuals (Shin et al. 2005). Howevenyraesults suggest they are not interchangeable and
412 instead capture different aspects of the fished assemblage. Biwagmgsore sensitive to fishing
413 compared to mean length. While higher average lealgthysreflects greater relative

414 abundance of large individuals, high biomass canraksat fromhigh abundance of small

415 individuals. Fhiswassupported by the fact that slope of slope (60 m) was thieatoipat

416 predictor for biomass, whilmaximumslope of slope in @40 m radius explained more

417 variability in“average length. Larger individuals and species generally havedeibroa

418 geographical'range of movements and thus respond to brezalermeasures of seascape
419 structure(Rittman et B 2007, Wedding et al. 2008, Kendall et al. 201tlis important to

420 consider bethsffished assemblage biomass and isizédtion becausdarge individuals

421 represent high=value species and high reproductive capacity (Birkeland and Dayton 2005).
422 Our response variablegerederived from pooling all targeted coralef fish specig(49)
423 for which we hadidequate data. These species represent a ratrgpelat guildsife history
424  traits and vulnerability to fishing (Table SIjhe majoritywereherbivores (23), followed by
425 mobile invertivores (15), piscivores (@nd detritivores (2). Maximum species sizes rdnge
426 from 19 cmrtorever two meters and known life-spans from 4 to 50 yHaisslevel of variability
427 is common.in coral reef fisheries and managers are in nesahjoie, yet meaningfuhetricsto
428 guide mapageent actons (Nash and Graham 201&)hile species differences in terms ofife
429 span and age at maturity will in#nce timelines of recovery, habitats characteristics which
430 support érgeted fish assemblages can be identified and used to select priority areas for
431 management(Rittman and Knudby 2014 )addition to their practicay, a significantadvantage
432 of using assemblage level megrior spatial modeling is the low prevalence of nalles which
433 improves modeperformancéWisz et al. 2008). Furthermore, usingaege number of species

434 providesmore stable spatiablutions when conducting mukpecies priotization (Kujala et al.

435 2017).

436

437 4.3 Habitat.and waves

438 Of the 27 seascape predictors selected for model develosiug®,of slopesine aspect,

439 wave power, and depth were selected as final prediatatshowegbositive relationshipfor
440 Dboth targeted fish bionsa andbody length. Topographically complex habitats offer more
441 potential niches and provide refuges from predation (Hixon and Beets 1989, Almany 2004).
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442  Slope of fope is a measure tbpographic complexitywhich along withrelatedLiDAR derived

443 metrics,has been shown to be highly correlated with in-situ rugosity (Wedding et al. 2008,

444  Stamoulis and Friedlander 2018)d astrongpositivespatialpredictorfor the distribution ofish

445 biomasgWedding and Friedlander 2008, Pittman et al. 2009). Depth has also been shown to be
446 a keypredicbr.of fish distributionswith higher fishbiomass generallgssociated with greater

447 depths (Friedlander and Parrish 1998a, Pittman and Brown 2011), suggesting that deeper wate
448 may representa refuge from fishing (Lindfield et al. 2014).

449 Both'targeted fish biomass and body length showed strong positive relationships with
450 sine aspect. Sine aspect measures east/west exposure with the highest values facing east towards
451 the prevailingstradsvinds. Windward reefsnay be more productive due to nutrient inputs from
452 increasederrestrial runofiRinguet and Mackenzie 2005, Giambelluca et al. 2GIR),

453 predominantly rough seas along eastern shores likely limit boat and shore fishirg. dativi

454  contrast, wave power is highest along north and northwest facing shores due wimgirstbe

455 north Pacifig(Fletcher et al. 2008)he positive relationships between wave energytamygted

456 fish biomassrand body length have several possible explanationsvéirgsmay providea

457 refuge from fishing pressure (Branch and Odendaal 2003, McLean et al. 2016shndefs

458 and mitigate land based source pollution, thus improving habitat quality (Fabricius 2005, 2011).
459 Highly wave exposed areatsohaveless smaikcale structureuch agrom branching corals

460 andsupport fewer small speciashile larger fistes are stronger swimmers ahds able to

461 subsist in‘areas with high wave ene(gyiedlander and Parrish 1998b, Friedlander et al. 2003).
462 Further research is needed to confirm these patterns and identify causal mechanisms.

463 Productivehahtats for targetefisheswere characterizelly easterrexposures and a

464 combination of high topographic complexity, wave power, and depth. Topographic complexity
465 provides ecological benefits, thougmay also provide some refuge from fishing. Higive

466 power, wind.exposure, and depittely provide refuges from fishing pressuhee to reduced

467 accessibilitywhich may in part explain whargetedish biomass antody length showed

468 strong positiveelationships with these factors.

469

470 4.4 Recovery patternsin the absence of fishing

471 Our comparison of predictedrgetedish distributions under current fishing levels and

472  with fishing pressure removed clearly shows the sttomiging influenceof fishing. Because our
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fishing effort layers were partly based on accessibility to humans and human poputatierafs
the variability they account for in models of targeted fish assemblage indicayrise due to
human impacts other than fishinghile currentproductive and healthyargetedish
assemblagesere largely restricted to areas less accessible to fishers, when fishing pressure
removed they.expaed throughout all suitable habitafBhis is supported by previous research
which showed.thagtructurally complex habitatearboed greater fish biomag&raham and
Nash 2013;"Darling et al. 2017). When convertegei@ent depletion, ouslandscaleestimates
of biomassecovery potential are generalbpver than estimates of depletion reported by
Williams et al.(2015), though relative differences amasigndswerefairly consistentThis is
unsurprising given that models used in Williams et al. (2@%&nated total fish biomass and
were calibrated on a suite of Pacific Islands ranging fsastine to highly degraded. Our
models were calibrated only on the mbiawaiian Islandswhich are far from pristinéAlso
Ni‘thau was assumed to have negligible fishing impatich is not strictly accurates
subsistence fishingccuss on the islandpop. 170), and there are reports of fishing from boats
based orKaua'ii Furthermore, due to gaps in the bathymdatasetshe shallow nearshore
areas arounbli‘ihau were not included in our analysis.

Areas with significant projected biomass and lemgtiovery had little direct spatial
overlap.Thisis because they represent different aspects of the fished asseaniolage
primarily influenced by different seascape predictors, espeamigrms of fishing effort. Shore
fishing explained the most variability in targeted fish biomass, while boat fishingnst
important forfish body length. As a result, when fishing pressure was removed, predicted
biomass inerease was highesaccessible, nearste areas with currently high shore fishing
effort, and body length showed greatesijectedncreases invell populatecareasclose to
boating facilitieswith currently high boat fishing effort. After fishing effort, high biomass
primarily driven by high topographic complexity (slope of slope) which is patchilytulisérd.
This resultedn fragmented pattesifor area®f highbiomasgecovery potential. In contrast, top
habitat predictors for body length were high exposure (sine aspect) and wave power which ha
more continueus patterngesulting in simildly unbrokenspatial patterns for areas witigh

length recovery potential.

4.5 Management applications
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In September, 2016 the governor of Hawai‘i made a commitment at the International
Union for Conservation of Nature (IUCN) World Conservation Conference to effectively
manage 30% of Hawai‘i's nearshore waters by 2030 (Ige 20EB@ctive management” will be
achieved through a broad suite of approaches including area closures for figpdeieismiment,
as well as identifying areas that are already healthy (Hawaii Division of Aquatic Resources
2016). Therefore, identifying presently productive areas and those with high recoverapistent
a priority, and an effective approach to accomplish this at the scale of thes Midely and
could serve'as‘a template for similar efforts elsewhere.

The prioritization approach presented in this study incorporates currengfishiels into
estimates of recovery potential, thus identifying areas where management actions will be most
effective inwrestoring coral reef fisheries. This was a result of comparing spatial predictions of
fishery indicators under exent fishing levels with predictioredterfishing is removed. Each of
these predicted maps also has utility for management. Spatial patteargetédish biomass
and bodylength under current fishing levels allows for identification of areas tha¢pilg
harbor healthysfish assemblages. Effectively managing fishing in these areas watddleais
they continue:to supplement adjacent fisheries, through larval export and spillostaltefad
juveniles*(Harrison et al. 2012, Stamoulis and Friedlander 28E8puse theseeas generally
have low.fishing pressure, management actions would mgumal cost in terms of fisher
displacement. Predicted maps of targeted fish distributions with fishing rdnuwreify habitats
capable of.supporting high biomass and larger fishes. This information can be used to
characterize'these essential habitats for coral reef fisheries. Comparing predictions with and
without fishing‘pressure reveals areas to focus fisheries management and provides estimates of
recovery potentialTargeted fif homass recovery in these areas representdd% increase on
average relative to current valdes O‘ahu withsmaller increase®r the other islande/here
fishing pressute is not as highhese areas show potentia¢an targetefish size increases of up
59% on O‘ahwwith smaller increasdsr the other islandd_ong-term monitoring data shows
overa tenfold‘increase in total fish biomass during the first 16 years of protectiomauifea
Bay, the oldest ntake reserve on O‘ahifrriedlander and Brown, 2004), suggesting that these
estimates are likely conservative.

The intrinsic rate of population growth (s the major driver of population recovery after
fishing pressure is removed (Jennings 2000). However, the rate of population recavery als

This article is protected by copyright. All rights reserved



535 depends on the size of the remaining population and degree of compensation or depensation, as
536 well as other factorg€lennings 2000)n the absence of this information, rough resties of

537 recovery rategmside notake marine reservesnbe inferred fronlife historytraitssuch as

538 trophic level, maximum body size and longevity (Abesamis et al. 20hé)targeted reef fish

539 species included in this analysighibitabroad range dife history characteristicélable S1)

540 and thugimelines of recovery will varyThe firstspecies likely to recover aree goatfish

541 (Mullidae)andseveralbof the parrotfisScaridae Anax< 7 yrs) based on their short lifespans,
542 and full recovery for these species may be possible within 10 years (AbesamZ)é&dal In

543 overfished regions such as the MHI, full recovery of moderate to highly vulneredgécth reef

544 fish such as jack@Carangids), wrassékabrids), surgeonfish (Acanthurids), and lapgerotfish

545 s likely to take2&40 years (Abesamis et al. 2014).

546 Areas with significant¢=0.1) projected biomass and length recovery were selected for
547 prioritization,.though the threshold could be adjusted based on management pagals. S

548 predictions,of high biomass and fish body length generally had high precision (CV < 0.5),

549 providing eonfidencén theresults This prioritization approach identified areas where

550 managementactions will hatlee most scope to restore fisheries and could be used as a starting
551 point for marine reserve selection. These areas are capable of supporting high ofihabges

552 fishes whiech constitute high reproductive capacity (Berkeley et al. 2004, Birkeidridagton

553 2005). The next most important criteria to consider is larval connectivity to ehatigdequate

554 portions of\larvaareexported into fished areq&reen et al. 2015While larval transport

555 modeling is'stillin its infancy, reoé work has modeled potential connectivity based on

556 oceanographic circulation in the Hawaiian islands and identified potential larval sources and
557 sinks at 4(kmresolution (Wren et al. 2016). Places that are capable of supporting high spawner
558 biomasswhichare also important larval source areas for connected reefs, would be good

559 candidates.for.enhanced fishery management or protection. Such areas, identifess: by

560 ecologicalecriteria, should be additionadlyaluated baseoh social, economic, and other

561 considerationgmportant for management (Smith and Wilen 2003, Charles and Wilson 2009,
562 Jones et al."2013).

563

564 5. Conclusions
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565 The development of spatially continuous and comprehensive fishing effort layers,
566 combined with seascape models of targeted fish assemblage indicators for the entire MHI,
567 allowed us to make spatially explicit estimates of recovery potentidhasdientify areas that
568 would benefit most from focused coral reef fisheries management. These areas are generally
569 located on the ea$acing shores of Kaua'i and O‘ahu, the southeast shore of Molthaiyest
570 shore of west Mayand isolated locations in west agaist Hawai'‘i Island However, the high
571 resolution"maps show considerabjmtial heterogeneiin thegeographical distribution of

572 recovery potentighsdefinedby habitat and fishing patterns. While targeted fish biomass and
573 bodylength were chosen here to characterize key attributes of reef fisheries, this approach could
574 also be appligd,using other fish response variables that are important to managers. The
575 informationsprovided is well suited for both local scale management and regiomna syatial
576 planning effortsithat aim to sustain and enhaastafisheries.

577 This study is the first of its kind to develop regiosekle seascape mod#iatintegrate
578 spatially explicit estimates of fishing pressurae high resolution of our model inputs and

579 predictions«(6&60 m) is consistent with movement patterns of mosieted fish species and
580 fishers(Weeks-et al. 2017).reebased modeling approaches amdl\suited tchandling non-

581 linear relationships and higbrder interactions of complex ecological ddd&’ath and Fabricius
582 2000). The-ability to make spatial predictions, or predictive mapping, expands updraieldi-
583 measurements that are erpve and spatially limited, and produces spatial information at the
584 scope and.scale necessary for lesgale assessments and marine spatial plariSsagnoulis

585 and Delevaux*2015%patially comprehensive, stinuous input and output datasets eliminate
586 the need forthe simplifying assumptions common in traditional approdetesn increase

587 uncertainty when results are extrapolated across the area of ireeelsttive mapping fills

588 gaps in survey coveragallows for testing of management scenagravsl provides spatially

589 comprehensive information for managers including estimatpeediction precisiorfPittman

590 and Knudby,2014). Finally, the apprbais flexible sahatit can be applied anywhere where
591 demersal fish"populations are targeted, and any mespaariablalerivedfrom fish survey data
592 can be modeled depending on the research or management question.

593
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Data Availability
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Tables:

Table 1: Final predictor datasets used in model development. Number of indoadasets of

each type indicated in parenthesis. A pairwise correlation analysis was performed on the full set
of predictors forthe whole study ar@aHI). Highly correlated predictors (Spearmah3 0.7)

were identifiedyand those highly correlated with two or more other predictorsemoged. See

table S2 formmore=details.

Predictor dataset types Datasets Description
Fishing (2) Boat fishing spear, Shore Boat and shore based fishing effort
fishing spear represented by spearing effort.

Seafloor topography  Depth, Slope, Slope of slope Seafloor topography metrics derived
(12) Aspect, Planar and profile  from bathymetry including depth, slope,
curvature, BPI structural complexity, exposure,
curvature and bathymetric position
index (BPI). Slope, slope of slope, and

BPI were calculated at two scales.

Benthic habitat Percent cover of CCA, Percent benthic cover of major cover
composition.(7) Macroalgae, Turf, and Soft types. Seascape fragmentation/patch
bottom, Proximity index, isolation. Habitat diversity.

Shannon’s diversity index

Geographic (3) Latitude, Longitude, Distance Geographic location and distance fron
to shae shore.
Wave energy (1) Wave Power Wave height * wave period.
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Table 2:Predicted mean biomaasd percent increase for targeted reef fishmeer present
conditions and with fishing pressure removed. Mésample size representing total number of

spatially predicted grid cells per island & standardieviation. Islands are ordered from north

to south.

Present No fishing
Biomass'(g'm ) N mean SD mean SD % Increase
Kaudi 67,967 11.2 8.7 27.6 9.7 147%
Ni‘ihau 10,677 30.0 10.2 30.5 10.4 2%
O‘ahu 84,870 4.2 4.1 19.9 7.6 370%
Moloka'i 38,220 10.9 9.2 23.5 9.4 116%
Maui 43,830 12.5 10.0 26.1 9.1 110%
Hawalii 30,702 13.4 8.7 26.6 7.3 98%

Table 3: Predicted medwdylength and percent increafse targeted reef fishamder present
conditions and.with fishing pressure removed. N is the sample size represeatingndier of

spatially predicted grid cells per island. SE is standard error of the mean.

Present No fishing
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926
927
928
929

% Increase

Length (cm) N mean SD mean SD
Kaudi 67,967 17.9 2.4 21.8 1.6
Ni‘ihau 10,677 23.0 1.2 23.0 1.2
O'ahu 84,870 15.1 2.0 20.0 1.6
Moloka'i 38,220 17.7 3.2 21.3 2.0
Maui 43,830 18.0 2.9 21.1 1.6
Hawali 30,702 18.6 2.1 21.0 1.3

22%
0%
33%
21%
17%
13%

Table 4: Biomasgg m?) and fish lengtt{cm) mean, standard deviation (SB)ean percent

increase, and standard deviation of percent inctegtseeen MHI model predictions for regions

of significant difference shown in figure 7.

Biomass Increase Length Increase
Mean SD Mean % SD% | Mean SD Mean % SD %
Kaua'i 294 26 383% 184% 6.5 0.6 45% 7%
Ni‘ihau 3.6 0.9 11% 2% 0.0 0.0 0% 0%
O‘ahu 259 238 517% 268% 7.3 0.5 59% 10%
Moloka'i | 21.6 2.2 349% 200% 5.8 0.2 43% 4%
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935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958

Maui 234 2.2 256% 125% 6.2 0.6 46% 9%
Hawati 219 21 203% 114% 4.5 0.4 29% 4%

Figurel-egends:

Figure 1. Main Hawaiian Islands study domain with reef fish survey locations used for
modeling.

Figure 2: Comparison of modeled shore fishing effort with empirical fishing survey vaiums
12 sites across the MHI (Hawiai 4, Maui- 2, O'ahu - 5, Kaua'- 1). Total fishing effort values
were obtained from Delaney et @017) and compared to derived spear fishing effort maps
based on the sum of pixel values within polygons matching the description of the suniay area
each reportFhe-equation of the fitted line is y = 0.48x - 1660.

Figure 3. Shore fishing effort around the MHI as represented)lshore based spear effort
(hrs/ha) Beat fishing effort around the MHI as representedb)lyoat based spear effort (hrs/ha).
Maui Nui encompasses the istis of Maui, Moloka'i, and.ana‘i.

Figure4: Final predictors for MHI models based on BRT model results for a) biomasg and b
body length. Relative percent variation explained is shown on #ixésxand the color represents

the directionality of the relaihship (red: negative, green: positive, orange: non-direc}ional
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Figure 5: Partial dependence plots of fishing predictors for the targetddishbiomass model.
Y-axis is transformed biomass'(#oot) and xaxis is predictor variable (units in table S1). Plots
represent the relationship of biomass with each predictor individually when all other predictors
are held at their mean. Lines are the mean of bootstrapped models plus and ersterscidrd
deviation.

Figure 6: Distributions of predicteiomassvalues under present fishing levels and with fishing
removedoreach islandX-axis is biomass valugeer 60x60 m grid cell and gxis is frequency

of biomass values as a proportion of the total number of gridpagllisland(density).

Figure 7: Distributions of predictetength values under present fishing levels and with fishing
removedor eaeh islandX-axis is length values p&x60m grid cell and yaxis is frequency of
length values as a proportion of the total number of grid pelsslanddensity)

Figure 8. Regions of significant increase € 0.1) in MHI model predictions of biomass and
length after. removal of fishindexisting notake reserves and restricted access areas are outlined

in black.
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